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Cities are deploying tens of thousands of sensors and actuators and developing a large array of smart services.
The smart services use sophisticated models and decision-making policies supported by Cyber-physical
Systems and Internet of Things technologies. The increasing number of sensors collects a large amount of
city data across multiple domains. The collected data has great potential value but has not yet been fully
exploited. This survey focuses on the domains of transportation, environment, emergency, and public safety,
energy, and social sensing. This paper carefully reviews both the data sets being collected across 14 smart
cities and state-of-the-art works in modeling and decision-making methodologies. The paper also points
out the characteristics, current challenges, and challenges that will be exacerbated in the future. Key data
issues addressed include heterogeneity, interdisciplinary, integrity, completeness, real-timeliness, and inter-
dependencies. Key decision-making issues include safety and service conflicts, security, uncertainty, humans
in the loop, and privacy.
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Modeling methodologies; • Computer systems organization → Embedded and cyber-physical sys-
tems.
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1 INTRODUCTION
The populations of large cities are growing rapidly. Rapid growth presents cities with problems
such as overcrowding, resource constraints, and poor public service coverage. Cities have begun
addressing the growth in many ways, including employing state-of-the-art technology such as
sensing, actuation, and decision-making services. For many years now, sensors in cities have been
collecting vast amounts of data. The data have been used to construct models of the operation of
the city in multiple domains and then used in various decision-making tasks, which usually reflect
on the actions taken on the actuators. Sensors, smart services, and actuators are running on smart
city platforms, which, in a general concept, provide communications, data storage, edge/cloud
computing, etc. A general structure of smart cities is shown in Figure 1. As cities become smarter,
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increasing amounts and variety of data are being collected, more and more services are being
provided and integrated, and more services are becoming real-time. It is projected that the economic
and social impacts of smart city services will be significant [92].

Fig. 1. Data, Modelling and Decision Making in Smart Cities

There is a big gap between data collection and data usage. On the one hand, cities, especially
governments, are collecting city data from different domains and encourage researchers and com-
panies to use the data to develop smart services. On the other hand, researchers keep complaining
there is not enough city data. This paper is meant to fill this gap by reviewing the existing data and
their characteristics, which partially count for the reason why these data are not fully exploited.
We hope this paper can help researchers to understand the available data better and help cities to
understand the demand from research and develop better strategies to collect data.
Smart cities are projected to employ many sensors and actuators connected to the Internet.

Hence, the Cyber Physical System (CPS) and Internet of Things (IoT) technologies form the basis
for smart cities. Also, as more services are being deployed in cities, many issues arise, such as
safety, privacy, security, dependability, control, manageability, and maintenance. There are some
survey papers [7, 102] in these areas. Drawing from all the three areas, this survey focuses on the
modeling and decision making for smart cities.

The goals for the reader (as shown in Figure 2) are to (i) develop an overall view of the scope of
smart city data sets, acquire an understanding of the specifics of what is and is not contained in
these current data sets, and address the characteristics, challenges and opening future work of the
data in smart cities, e.g., heterogeneity, interdisciplinary, integrity, completeness, real-timeliness,
and interdependence; and (ii) expose to the wealth of modeling and decision making solutions
that are being applied to transportation, energy, emergency, and social sensing services. The paper
also highlights the methodologies and some cross-cutting issues at the forefront of modeling and
decision making challenges, e.g., safety and service conflicts, security, privacy, uncertainty, and
human-in-the-loop.

2 CITY DATA
2.1 Overview
A large amount of city data have been collected and published in recent years by governments, city
departments, institutes, researchers, and individuals. In order to build a smarter city and increase
accountability and responsiveness to citizens, city governments from many countries around the
world are required by law to publish the city data that they collect. In New York City, it is required
by Local Law 11 of 2012 that each city entity must identify and ultimately publish all of its digital
public data by 2018 [21].
There already exist enormous amount of data. For instance, there are over 183,500 data sets of

American cities available on the U.S. government’s open data sites with an average increase of 2791
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new data sets per month (according to data from January to June, 2016). These data sets cover a
very broad range of information from individual air quality readings to overall traffic performance.
To provide a more concrete understanding of the data, a set of typical examples of city data sets are
shown in Table 1, which itemizes examples of the data collected from 14 representative cities in 5
domains. Some cities in Table 1, such as Åarhus, Chicago and Paris are in the process of building
a smart city, so they deploy the sensors for data collection with high density and well-chosen
locations in the city. Furthermore, smart city platforms such as Arrary of Things, SmartSantander
and KM4City of Barcelona are built to obtain and display the data in real time. These data are of
great value to understand city mobility, develop new services and improve city performance.

Fig. 2. Characteristics, Challenges and Future Work of Data, Modeling and Decision Making in Smart Cities

2.2 Existing City Data
City data are collected across a very broad set of domains, including transportation, emergency
services, public safety, energy, environment, public health, social media, economics, education,
telecommunication, tourism, culture, and city planning. From the varied potential purposes of city
development of services, different cities emphasize different domains. For example, focusing on the
development of economics and education, about 41% of the data sets from New York City [68] is
related to city government and education. On the other hand, Åarhus, focuses on geographic data,
environmental data, and cultural events data [1].

2.2.1 Transportation Data. Transportation data include geographical information, traffic mobility
history, public transport performance, and traffic anomalies. In particular, the data come from
sources such as infrastructure, traffic flow dynamics, and human-in-the-loop systems.

Infrastructure specifications, such as maps of bus stations, subway entrances, bicycle routing, and
parking locations are often published as the basic information of city transportation, for instance,
the transportation data from Barcelona in Table 1. Usually, they are either shown on a map visually
for citizens’ reference and stored in XML files for querying, analyzing, and integrating with other
data sets.
Traffic flow dynamics collects traffic performance data, such as real-time traffic data, taxi trip

data, and parking usage Table 1. Traffic flow dynamics data are usually published as time-series
data recordings with comprehensive traffic attributes. An example of traffic data from Åarhus is
shown in Table 2, which is recorded every 5 minutes. Here, the sensors are deployed at two ends of
one street to provide precise locations and movement data. Thus, one can recover the traffic flow
dynamics from the data and correlate the traffic data with other data by aligning location and time
information.
Many cities frequently publish data of different modes of transport, such as taxis, buses, urban

trains, and bicycles. Some examples of available data sets are shown in Table 3. Useful information
and patterns of transportation can be obtained from individual data sets as well as from integration
across multiple data sets.
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Table 1. Examples of Existing Data Sets for Cities in Different Domains

City Transportation Emergency &
Public Safety Energy Environment Social Sensing

Amster-
dam
[20]

Traffic, Bike share, &
Accidents

Dispatches & Crime
statistics

Pollution (Air &
Water) & Canal
water levels

Economic activity
& Sentiment, Public
opinion, and
Tourism

Åarhus [1]
Real-time traffic
data; Parking;
Bicycle

Solar; Luminaires
Åarhus

Cultural event;
Library event;
Weather;
Pollution;Waste
Containers

Open Data Åarhus
newsletter

Barcelona
[9]

car parks, cycling
lanes, petrol stations,
car hire, bus stops;
car-sharing; electric
vehicle charging
stations;

People involved
accidents;Accidents
managed by the
Police;

Oil container
recycling;

Acoustic map;
Weather forecast

List of media
equipments and
related services
equipment; Shows
at performing arts
spaces; List of
events daily;

Beijing
[45]

Taxi Trajectory Data
set; road networks

Air Pollution:
Real-time PM2.5 Air
Quality Index

Berlin [19] Traffic & Accidents Dispatches &
Reports

Real time pollution
(Air & Water)

Economic activity
& Sentiment, Public
opinion

Chicago
[21, 71]

Traffic Tracker -
Congestion
Estimates; Traffic
Counts and Speed;
Parking

Crimes;Snow Alerts;

Energy
Benchmarking;
Energy Usage(2010);
Home Energy Score
Application
Programming
Interface (API)

Weahter;
Environmental
Complaints

WGN-TV Traffic on
Twitter

Copen-
hagen
[67]

Traffic & Bike share
Accidents,
Dispatches, & Crime
statistics &
Outcomes

Energy prices &
public usage

Real time pollution
(Air & Water)

Economic activity,
Tourism, Events,
Sentiment, and
public opinion

London
[22]

GB Road Traffic
Counts

London NHS A&E
Performance Report;
On Street Crime In
Camden

Department for
Transport real time
energy use

London Earth
Topsoil Chemical
Data

London Borough
Profiles

Milan [23] Traffic, Accidents &
Reports Air pollution

Economic activity
& sentiment and
tourism

New York
[68]

Vehicle Collisions;
Volume; Real-Time
Traffic Speed Data;
Yellow Taxi Trip
Data;

Emergency
Notification; Crime
Data; Major Felony
Incidents; Hurricane
Evacuation Centers;

Energy and water
data;

Water Quality
complaints; 311
Service; Air Quality;

NYTimes
APIs;Carpoolworld
API;Yelp API;New
York City (NYC)
Social Media Usage

Paris [74]

Traffic data from
permanent sensors;
Taxis available
referenced in mobile
Taxis Paris; Parking
lots

Accidents

Street lighting and
traffic lights; Energy
labels buildings;
Volumes of water
distributed;

Green near me

Santander
[90]

Real-time Traffic
Condition;Taxi; Bus;

Facility
emergency(cleaning,
maintenance)

Park condition;
Waste;Garbage
Pickup; Weather;
Temperature; Air
quality; Noise

Stockholm
[96] Traffic & Accidents Dispatches &

Reports
Energy prices,
Demand, Central
heating

Real time pollution
(Air & Water)

Economic activity
& Sentiment, Public
opinion

Zürich
[72] Traffic & Accidents Dispatches & Crime

statistics Air pollution
Economic activity
& Sentiment, Public
opinion
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Table 2. Examples of Data Set Items

Data Sets Items
Real time traffic data in
Åarhus

Timestamp, Street location, latitude and longitude for start and end Point of Interests (PoIs),
counts of vehicles, average speed, and time interval of measurement

Criminal data from
Montgomery County

Incident ID, Dispatch Data, Class Description, Police District Name, Block Address, City,
Location, Start time, End time

Austin Water Consumption Year Month, Postal Code, Commercial/Customer Class, Total Gallon
Energy Usage of 2010
Chicago

Community Area, Census Block, Building Type, KWH (monthly), Electricity accounts, Therms
(monthly), Gas Accounts, Occupied Units, Renter-occupied housing units

311 Service Request in NYC ID, Create Data, Close Data, Agency, Complain type, Descriptor, Location Type, Address,
Location (Latitude, Longitude)

Disaster annotated tweets of
Italy

Tweet ID, Text, Source, Author’s screen name, Author’s ID, Latitude and longitude, Time,
Disaster ID, class

Table 3. Traffic Data for Taxi, Buses, Urban Trains, Bicycles and Others

City Taxi Bus UrbanTrain Bicycle Others

Beijing [45] Taxi Trajectory
Dataset[109] Schedule Schedule Public Bike[31]

Chicago [14] Schedule; Real-time
Bus time Transitchicago Divvy Bicycle

Stations
Traffic Counts and
Speed

London [22]
London
Information
System

Bus Punctuality
Statistics Cycle Parking GB Road Traffic

Counts

New York [68] Yellow Taxi Trip
Data

Schedule; Real-time
Bus time

Schedule; Subway
entries&lines

Bicycle Routes
Across New
York State

Real-Time Traffic
Speed Data

San Francisco
[69]

Travel Decision
Survey

Schedule; Real-time
Bus time Schedule; Bicycle Parking

Seattle [70] Taxi transfer
dates and values

Schedule; Real-time
Bus time Schedule; City of Seattle

Bicycle Racks
Shenzhen [103] Taxi Trip Data Schedule Schedule; Smart Card Public Bike

Human in the loop data, such as medallion drivers’ historical archives, car and bicycle sharing
data, and passenger waiting and transit times data are provided by many cities. Human in the loop
data provide data to analyze related human behaviors, and thus can lead to the improvement of
transportation services.

2.2.2 Emergency and Public Safety Data. Emergency and public safety data include the level of
safety provided to the city’s populace, level of readiness of its emergency services, and occurrence
of emergencies, criminal activities, accidents, and natural disasters.

Some cities reveal up-to-date individual and public emergency events obtained from emergency
services. For example, the data sets of emergency notifications from New York city present times-
tamps, location, event type, and content of the emergency notification to the populace. Event
types include severe weather, natural disasters, utility problems, mass transit disruption and so on
(see Table 4). With specific notifications, people can identify the occurrences of emergency and
disruptive events and analyze the possible reasons and effects of those events from current and
historical data.
Public safety data, such as criminal and accident data are another important source to monitor

and to use to control city safety. Criminal data of many cities are released by the police departments.
For example, Montgomery County publishes data daily on its website, providing the public with
direct access to crime statistic databases of reported County crime. It reveals detailed information
to the public, especially including the temporal and spatial information, items of which are shown
in Table 2. Aggregated criminal data of many cities, though not as specific as event-based data, also
give valuable information on the safety conditions in the city. Examples include, Chicago crime
data from 2001, felonies and misdemeanor crimes from the state of New York, and crime camera
location data from Baltimore. Public safety data help citizens obtain immediate alerts, measure
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Table 4. Examples of different types of emergency notifications for people in New York City. The text in the
second column is extracted verbatim from [73] to demonstrate sample notifications.

Type Example

Unplanned Road
Closure

“Dangerous condition due to falling glass at 200 Murray St (MN): Notification 2 sent 11/28/09 at 8:05 PM.
West Street between Vesey Street and Chambers Street in Manhattan has been reopened after an earlier
closure due to falling glass at 200 Murray Street. Expect residual delays.”

Mass Transit
Disruption

“Notification issued 4/16/14 at 2:40 PM. Due to police department activity, M trains are currently suspended
in both directions between Myrtle Avenue in Brooklyn and Middle Village-Metropolitan Avenue in Queens.
Consider alternate routes.”

Utility “Notification issued 1/5/14 at 12:45 AM. Con Edison is responding to a power outage in the Flatbush section
of Brooklyn, including areas of ZIP code 11210, 11229, 11234. ”

Fire “Notification 1 issued on 02/05/2010 at 9:00 AM. Emergency personnel are on scene of a third alarm fire at
118-39 154th St in Queens. Expect traffic delays in the area.”

Environmental “Previous 24-hour rainfall (inches) at NOAA rain gauges as of 6/02/2012 7:00AM: JFK Airport: 1.26 LaGuardia
Airport: 1 Central Park: 0.64 List of Advisories: BERGEN BASIN: CSO Advisory until 6/03/2012 3:00AM”

Public Awareness
“Notification 1 issued 11/1/09 at 5:05 PM. There will be a 21-gun salute tomorrow 11/2/09 at approximately 8
AM from the deck of the USS New York. The ship will be in the Hudson River near the World Trade Center
Site in Manhattan. Expect repetitive loud noises.”

Weather
“Notification issued on 9/22/2010 at 2:30 PM. The National Weather Service forecasts the chance for strong to
severe thunderstorms this evening between the hours of 5 PM and 9 PM. These storms can produce very
strong and gusty winds. Please be aware of damaged trees or trees with dangling limbs.”

Public Health “Notification 1 issued on 12/4/2009 at 3:20 PM. Free H1N1 vaccine in all 5 boroughs this weekend. To check
locations and see who’s eligible, visit NYC.gov/flu or call 311.”

School
Notification

“This is a message from Notify NYC. Notification 1 issued 6/1/09 at 5:20 PM. Go to www.NYC.gov/schools or
call 311 for the City Of New York’s updated list of public school closures due to H1N1 flu.”

Parking “Notification 1 issued 12/19/09 at 11:58 AM. Alternate side of the street parking rules are suspended today
due to the impending snow storm. For further details, please visit www.NYC.gov, or contact 311.”

Missing Child /
Adolescent

“Alert issued 04/30/10 at 2:25 PM. The NYS Police have issued an AMBER Alert for the abduction of a child,
Shaylenn Brunson from Trinity Avenue in The Bronx at 4:30 AM. Shaylenn is a 4 year old black girl with
black hair, blond streaks and brown eyes, 3 feet tall and 48 lbs.”

Infrastructure
“Notification 2 issued Aug 8, 2008, 4:10 am Because of an accident and pedestrian bridge collapse on the
Bruckner Expy at Waterbury Ave, the Bruckner Expy is closed in both directions between the Cross Bronx
Expy and Pelham Pkwy. Please find alternate route.”

the safety in neighborhoods, distribute safety measurements and devices, and thereby build smart
safety services to prevent harm to property and humans. With the development of smart real time
platforms, more timely and emergency safety data are projected to be publicly available in the near
future.

2.2.3 Energy Data. Energy data focuses on energy usage and production in the city, including
electricity, water, gas, oil, solar energy and other energy resources that are used by the public and
individuals, as shown in the column of energy in Table 1.

Energy consumption data sets contain the detailed electricity consumption patterns of buildings
and homes (e.g., energy usage and home energy score API from Chicago, energy labels buildings
from Paris) as well as the energy consumed by devices (e.g., Luminaries Åarhus). Austin Water
data includes commercial and residential monthly water consumption. Another important type of
data is the distribution of utilities. These data are provided by some cities, such as the volume of
water distributed in different areas of Paris Table 1. Example of contents of these two data sets are
shown in Table 2.

Both energy distribution and consumption data sets are essential inputs of the energy models to
analyze users’ habit on energy usage, save wasted energy, optimize city energy distribution, and
provide customized energy services.

2.2.4 Environmental Data. City environment datamainly focuses on the surroundings or conditions
in which citizens live or operate. Published environmental data sets typically cover data related
to air-quality, weather reports, weather measurement, and green areas. Environmental data also
include data associated with human related activities, such as cultural events, waste container
status, construction areas, and citizens’ voice and involvement.
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Smart cities like Åarhus collect air quality data at a high density of PoIs every 5 minutes. Real
time data from Barcelona shows the city map with distribution and availability of services including
restaurants, schools, hotels, and hospitals. Mapillary [65] published a large-scale street-level image
dataset containing 25,000 high-resolution images from all around the world, captured at various
conditions regarding weather, season and daytime. It is annotated into 66 object categories. The
data set has been broadly used to empower the machine understanding city environment. The U.S.
EPA AirNow program [3] receives real-time data from over 2,000 monitoring stations, and thus
provides forecast and real-time weather and air quality information for more than 300 cities in
the United States, Canada, and Mexico. Water Quality with total maximum daily load is collected
from 622 testing sites throughout Pennsylvania to identify sources of pollution. For normal cities,
forecast, current and historical weather data and activities are provided by weather APIs such as
OpenWeatherMap [75] and WunderGround [98].

Fig. 3. Top 20 Categories of NYC 311 Environmental Service Requests (Counted by the number of records.)

The daily updated data sets of complaints in Chicago and 311 Service Requests in NYC record the
voice from citizens, reflecting the complaints on the noise, heating, street lights, parking, water leak,
etc. Figure 3 indicates the top 20 categories of citizen’s concerns on environment from 311 Service
Request in NYC data sets from 2010 to 2016. Hundreds of requests are added every day with very
specific information, which not only includes the complaint events, but also the start and end time,
locations, detailed descriptions, as shown in Table 2. Human activity environmental data reflect the
citizens’ influence and degree of satisfaction on the surroundings. For example, a cultural event in
downtown can cause street blockage or traffic congestion in nearby areas. Human complaints on
the city environment help improve the decision making process of relevant services. Therefore,
environmental data are not only meaningful for the smart environmental services, but also act as
an important input source for other smart services. Meanwhile, correlating human activities with
environmental data is of great significance to build human-in-the-loop smart cities.

2.2.5 Social Sensing data. Social sensing is a domain that collects data from social participants,
voluntary or involuntary, and contributes that information to other domains. Typically, this type
of data has traditionally been collected with surveys. Nowadays, multiple sensors (e.g., GPS,
accelerometers) are integrated in mobile devices to track mobility of humans and vehicles. These
devices collect data that are directly associated with human behaviors and social interactions. In
smart cities, social sensing data, like NY Times and list of daily events in Table 1 give the latest news
reports and event list, while WGN-TV Traffic on Twitter updates the latest Chicago traffic accidents,
delays, roadwork, transit issues and flight info from both the public and individual sources.

Furthermore, in recent years, sensor data collection techniques and services have been integrated
into social networks [2]. For example, R. Kosala and E. Adi [43] extract the real time road traffic
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information in Jakarta, Indonesia from Twitter timelines for real time mapping; NYTimes API
provides news reports important news, events as well as other information of all the cities in U.S.;
and based on user data from a location-based online social network in Pittsburgh, PA, Livehoods
[17] collects about 18 million check-ins data. This data represents dynamic urban areas within
cities. In addition, a data set [18] of 5,642 manually annotated tweets about 4 different natural
disasters that occurred in Italy between 2009 and 2014 is released.

By utilizing social media data city authorities can obtain more comprehensive and timely status
of a city that is difficult to gain solely from traditional sensor data and surveys. However, there are
also trust and privacy issues regarding data analysis as these data may reveal user identity.

2.3 Characteristics, Challenges and Future Work
Comparing to other large-scale IoT systems, which are usually developed and used by one party,
smart cities are built and shared by different stakeholders (e.g., governments, companies, private
citizens). Sensors may be deployed first by one stakeholder and utilized by more stakeholders with
more purposes than the original design. One sensor may serve multiple purposes for different
services across domains. For example, a camera deployed to monitor traffic conditions at an
intersection can be used by traffic optimization models, traffic violation monitors, air quality
prediction models, emergency routing services, etc. in a smarter environment. This leads to the
city data with very high heterogeneity and interdisciplinary uses. A smart city integrates a large
number of sensors, actuators, and services across a very broad temporal and spatial range. It is
very expensive (regarding both time and money) to maintain, validate, and upgrade. However,
the development of technologies in smart cities evolves very fast, and raises high demand for
the upgrade of infrastructures and the quality of the sensors, where issues of data integrity and
completeness occur. Different services using and generating new data lead to the interdependence
among data, and affect the real-timeliness of the services.
All of these special factors of smart cities and their influences on each other account for the

complexity of smart cities, which also amplify the characteristics and escalates the challenges.
In the following sections, we first discuss several key characteristics, including their importance
and challenges to the development of smart cities, as well as the open questions for future work
regarding how to process, integrate, and store data. In particular, we focus on seeking the reasons
and solutions to shorten the gap between the collection and utilization of the data.

2.3.1 Heterogeneity. Heterogeneity of the city data refers to the data diversity in many aspects,
such as,

• Temporal and spatial granularity of collection: Granularity is the scale or level of detail of the
data in temporal and spatial domains. Most of the data streams in smart cities are highly
spatial-temporal dependent, which easily leads to different sampling rates or aggregation
ranges regarding time and locations. For example, the NYC open data releases the real-time
traffic speed data sampled every minute by street, while the air quality data is aggregated
yearly by district. This mismatch is very common in city data, and it affects the models that
learn from multi-source data. For instance, it is difficult to model how the traffic influences
the air quality with only yearly air quality data despite the high granularity data of traffic.

• Application domains: Cities have different focuses on the application domains, which leads
to a variety of data sets. For example, data published by U.K. cities emphasize population
information (e.g., education, age, and birth rate), Åarhus pays more attention to the city
mobility (e.g., transportation), while New York City presents large amounts of city events
related data sets. Hence, it is difficult to obtain enough data across domains from one city to
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generalize city patterns and build standardized smart city services or platforms for multiple
cities.

• Presentation format: Data sets are heterogeneous in the ways they are presented, such as
audio, image, video or text data, raw data or processed data, etc. Processing the data in a
different format is very important for smart services. For instance, traffic services extract
traffic volume and vehicle plate numbers from the video data, and autonomous vehicles learn
the driving environment from street images.

Since different cities, departments, and stakeholders collect data with various protocols and
intentions, heterogeneity across city data sets is unavoidable. However, heterogeneity poses sig-
nificant challenges and open research directions for processing and integrating the data by smart
services, which try to learn from the city data and take actions to improve city performance (See
Section 3 for smarter services).
To begin with, data storage and retrieval techniques will be determined by the data types, e.g.,

storing and retrieving 3D models of city infrastructures involves larger amounts of resources and
complexity than the coordinates of PoIs. From the perspective of information retrieval, indexing
and querying heterogeneous city data depend on the application at hand. So the data storage and
indexing system should efficiently support the corresponding applications. The applications might
demand data representation and indexing for efficient data retrieval operation. This poses additional
challenges since, unlike traditional CPS architecture, the smart city is projected to be a platform
supporting multitude of applications that are governed and maintained by several organizations
with the varying administrative capacity and information access. Thus a smart city introduces
additional technical challenges due to bureaucratic issues. Since a smart city application can support
real-time large-scale data collection, appropriate data compression techniques should be adopted.
For example, while collecting video surveillance data across different parts of the city for public
safety applications, online stream processing, and data compression should be performed to make
sure the volume and velocity of the data do not surpass the data storage capacity.
Transfer learning between cities is another direction to deal with the data heterogeneity. For

example, transferring the data from one city with sufficient multimodal data and labels (traffic
and environment data) to another city which only has limited environmental data based on their
geographic similarities [101]. People also try to infer the data to a lower granularity using its
neighbor data. However, how to match features from completely different cities or locations and
ensure the accuracy is still an open question.

2.3.2 Interdisciplinary. Due to the nature of the smart city research, comprehensive models built
from and affecting many application domains, the research based on the city data is profoundly
interdisciplinary. It usually concerns more than one branch of knowledge across different sciences
and domains, including statistics, computer science, economics, political science, sociology, urban
planning, transportation, environment engineering, etc. Meanwhile, the development of IoT also
promotes the interdisciplinary study of the city data. For example, Nokia Bell Labs maps the
ambiance of neighborhoods in the entire city of London using social media data [85], Dantec
models cycling experience in Atlanta by deploying specialized sensors to track cyclist stress,
integrating noise and environmental pollution data [12].

However, the interdisciplinary study also encounters great challenges. Domain experts may not
have enough knowledge of another domain. For example, environment experts may not know how
to process the traffic data, which has a big influence on real-time air quality. Researchers from the
public safety domain may not be good at extracting potential safety issues from social media data
through natural language processing techniques. Issues brought by the interdisciplinary aspects of
smart cities will escalate as the city becoming smarter in many aspects and more real deployments
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from the research to the field occur. For example, acoustic systems that have high accuracy to
detect people’s mood may have much lower accuracy in the city due to many unexpected factors,
which researchers are not familiar with.

Standard policies, tools, interfaces, and platforms are potential approaches to help with the
interdisciplinary issues. Companies are building smart city IoT platforms, such as, the IBM Watson
IoT [100], the Azure IoT suite from Microsoft [8], and LiveLabs [10]. They integrate the data and
provide a set of approaches (e.g., packages for data cleaning, text mining, etc. ) to process the data.
It is also possible to package the knowledge from one domain to a black box with a user-friendly
interface. For example, city managers can use templates to specify city requirements in natural
language without knowing anything about the formal methods used in the background for checking
the requirements [54].

2.3.3 Integrity. The integrity of the city data indicates the correctness and trustworthiness of the
data, especially to the city managers, developers, and citizens. The integrity of city data can be
compromised during the data collection, aggregation, and processing.

• The quality of the sensors influences the accuracy of the data. Unlike a small-scale IoT
application, smart cities have millions of sensors. It is very expensive and nearly impossible
to maintain and validate the accuracy of all sensors at all the time. For example, many parking
garages deploy motion sensors to count the number of available spots, which is not accurate
due to a malfunctioning of the sensors, but the managers may have no effective way to
validate them in real time.

• The environment of the sensors affect the integrity, such as the height, the depth, and the
location of the in-situ sensors. For example, the data from an air quality sensor varies when
placed at different heights at the same location. Also, the data from an acoustic sensor can be
very noisy if it is placed near a water pipe.

• The pre-processing process affects the integrity of the data. Before publishing, raw signal data
collected from sensors are processed using algorithms from the areas of signal processing,
data mining and machine learning. As a result, the integrity of the data depends on the
accuracy of these algorithms. For example, a vehicle plate recognition algorithm reads the
number of a vehicle plate and records it, the integrity of which depends on the accuracy of
the optical character recognition algorithm.

• Useful information is lost while data are being aggregated. In many cases, due to different
reasons (such as storage demand, privacy concerns), raw data are aggregated by time intervals
or locations. In the process, the information recorded at a precise time-stamp and location is
lost.

• Integrity may also be compromised by the security attack or deception from users on purpose.
Citizens can change the GPS on their phones to protect their privacy, and criminals may
attack city cameras.

City data lacking integrity diminishes the accuracy and effectiveness of smart services. Therefore,
maintaining and verifying the integrity of data and understanding its provenance is important yet
challenging. For instance, how to validate that smoke detection sensors are functional, and how
to know if the sensors are at the right positions or facing the right directions after deployed for a
long time are difficult issues? It is becoming even more challenging due to the large scale and the
diversity of smart services of the smart city.
Researchers are developing strategies to ensure the integrity of the data. There are several

strategies the city could apply to ensure the integrity of the data. First, adding necessary redundancy
in spatial and temporal domains whenever possible, e.g., deploying multiple sensors or different
type of sensors at one location with different sampling rates. People can validate the data online
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or offline comparing to the additional data. For example, adding cameras in the parking garage
to validate the motion sensors. Second, validating the data with safety requirements using formal
methods at runtime. Third, anomaly detection of online data streams might also enhance data
integrity. Again, these solutions can be very time-consuming and expensive to deploy and execute
at runtime.

2.3.4 Completeness. The completeness issue represents the sufficiency and the quality of the data.
With the rapid development and great achievements of deep learning in CPS and IoT, an increasing
number of papers apply deep learning to smart city applications to learn from the massive amounts
of data available. High quality and completeness of data help the classifiers to build better models.
Despite the fact that a large amount of city data has been published, its incompleteness from a
service perspective exists in the following ways.

• Incomplete data items: It is a typical situation caused by malfunctioning of sensors or commu-
nications, and also occurs when owners of data selectively release data sets. As an example,
although Åarhus collects large amounts of city data, the time span that fully overlaps across
all the categories of data is only two months, which is such a small period of time to build an
accurate model.

• Incomplete attributes: Important attributes of a type of data are not collected or revealed in
the data due to various reasons. For example, in spite of being an important attribute, location
information is often removed from accident and crime data sets, due to privacy concerns.

• Incomplete contents within one domain: As shown in Table 1, some cities collect many aspects
of data within one domain, while others only collect one or even none of a particular type
of data. For example, some transportation services only collect parking data from a set of
locations ignoring traffic volume data of those locations. Similarly, some services collect
historical traffic volumes only on highways ignoring traffic volumes of the rest of the streets
and locations.

Incompleteness highly affects the performance of smart service models. To deal with it, on one
hand, this incompleteness can be managed during data analysis before the training process. The
volume and redundancy of city data can be exploited to compensate for missing data and to uncover
hidden relationships. The correlation of data on the temporal and spatial domains can also be
exploited to infer the missing data. On the other hand, probabilistic models are useful to reveal
the uncertainties caused by the incompleteness. With probabilistic guarantees, users can be made
aware of the potential uncertainties and results.

2.3.5 Real-timeliness. Concerning data collecting and processing, real-time city data streams are
the data that can be accessed and processed in real time. Only a small amount of the city data
are available for real-time usage. Some real-time data APIs and dashboards are shown in Table 1.
Meanwhile, cities, such as Santander and Åarhus, provide real-time data that can be processed in
smart services directly. The performance and accuracy of real-time services highly depend on the
quality of real-time data.
Smart services require real-time data to take real-time actions and make real-time decisions.

However, most of the existing data sets go through a publication process and thus end up having
a time delay from collection time to release time. Usually, the delay varies from days to years
depending on the content and privacy requirements on the data. For example, 311 service notification
data are updated every day, while the latest NYC traffic data is from 2014. Without real-timeliness,
there will be considerable challenges for building smart services, since most smart services take
instantaneous actions responding to the city. For example, maps with navigation functions can
only give an effective route based on the current real-time traffic conditions.
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Realizing real-timeliness poses open questions, such as what is the required deadline and where
does it come from, how to meet the deadline, how to speed up the algorithms to process a large
amount of the data, how the speed and quality of the communication between services and sensors
affect the real-timeliness, etc.

2.3.6 Interdependence. The interdependence of city data indicates the relationship or interaction
between different data, which commonly exists and causes significant influences on each other.

• Interdependence between data sources: the data from one data source relies on other sensors.
For example, the parking service shows the occupancy of the parking garage, which is
aggregated from the motion sensor on the top of each parking spot.

• Interdependence between the data source and service data: cities not only collect data from
sensors, but also from services. For example, the safety service monitors the number of people
in the park which is obtained from the safety monitor service that processes the camera
data. In addition, some smart services are trained with historical data and then process the
real-time data using machine learning algorithms, such as forecasting the weather, or criminal
facial recognition. The output data from these services highly depends on the quality of the
training data.

• Interdependence between service data: some services take the output of other services as
their input. For example, to predict the air quality, the environmental service unusually takes
the volume and the speed of vehicles into consideration. If the traffic data generated from
the traffic service are inaccurate, so will the air quality data be.

As we’ve discussed for the features of heterogeneity and interdisciplinary, cities are building
comprehensive models and services, which are inevitable to consider the data from multiple
resources and meanwhile generate more data. This process causes interdependence.

On the other hand, the quality of the dependent data highly depends on the quality of the original
data. Interdependence between services increases with the growing complexity of smart services.
The verification of data accuracy and awareness of influences from other data streams are critical
in the future work of smart cities.

3 MODELING AND DECISION MAKING
3.1 Overview
This section provides an overview of existing models and decision making for smart city services
and systems across five different domains, including transportation, emergency and public safety,
energy, environment, and social sensing.

To start with, we summarize entities modeled across these domains in Table 5, and the methodolo-
gies for modeling and decision making in papers. As shown in Table 6, integrating heterogeneous
data and data analysis & mining are the most common methodologies applied. We also found
that many systems use multiple methodologies to build models. In addition, we discussed the key
characteristics of existing modeling and decision making systems, and the challenges and open
research questions for future work.

3.2 Existing City Services Modeling and Decision Making
3.2.1 Transportation. Smart transportation systems not only promote better traffic service and
citizens daily living, but also have the potential for improving public safety and environment. State-
of-the-art transportation systems are used to analyze a city’s mobility, optimize the performance
of traffic, and thereby provide better transportation services to build a smart city. This is done by
applying models to (i) analyze and predict the traffic flow dynamics, (ii) find traffic patterns by
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Table 5. The Entities Modeled Smart Cities

Domain Entities Modeled

Transportation
Traffic flow dynamics, patterns of vehicles, pedestrians, road conditions, trajectories, EVs charging
and discharging schedules, scheduling schemes, traffic speed, smart parking, taxi dispatching,
bicycle sharing and autonomous vehicle planning

Emergency and
Public Safety

First responder strategies, emergency situations, emergency aid, nature disaster supply distribution,
population mobility

Energy Energy demands, energy usage, renewable energy sources, building energy model, smart grids

Environment Monitoring, understanding, prediction, and management of city environments, primarily
considering air, noise and water quality traffic emission, health care (e.g. Asthma)

Social Sensing City events, social media messages, searching history, etc.

Table 6. Methodologies for Modeling and Decision-making in Smart Cities

Methodology Transportation Emergency &
Public Safety Energy Environment Social

Sensing
Dynamic
programming [4, 15]

Quadradic programing [15]
Integrating
heterogeneous data [4, 30, 103] [5, 57, 94] [24, 37, 71] [49, 87]

Analysis & mining [4, 5, 76, 78, 105] [5] [32, 59, 62, 97, 99] [49, 87]
Simulation [13, 52]
Anomalies Detection [4]
Physical statistical
modeling [78] [97] [106, 107]

Forecasting &
Scheduling [38, 48, 50, 60, 61]

Optimization [61, 61, 91, 103]
Visualization [13] [5]
Crowd-sourcing [87] [87]
Signal Temporal Logic [54, 55] [54, 55] [54, 55]
Policies & Rules [51] [47] [47, 51]

mining the traffic trajectories, (iii) integrate heterogeneous traffic information, (iv) simulate the
traffic dynamics, and (v) integrate electric vehicles (EVs) and autonomous vehicles into traditional
transportation systems.

(i) As introduced in Section 2, large amounts of transportation data are collected by smart cities.
Past research efforts on smart transportation use these data sets to model traffic flow dynamics,
including the patterns of vehicles, pedestrians, road conditions and city events. Comprehensive
models are trying to use data from multiple sources to obtain a better image of traffic flow dynamics.
For example, P. Anantharam et al. [4] build the Restricted Switching Linear Dynamical System
to model vehicle speed and travel time dynamics. It characterizes anomalous dynamics using
speed and travel time acquired of vehicles from physical sensors [69] and explains the anomalies
with traffic related incident reports from city authorities and social media data [16]. With the
prevalence of deep learning techniques, researchers are starting to use deep learning models to
predict traffic flow dynamics. These papers usually try to find the traffic patterns from the big
traffic data considering both temporal and spatial correlations. For example, Lv et al. [50] are one of
the first researchers to propose a deep architecture model for traffic flow prediction using a stacked
autoencoder model to extract traffic flow features, and a logistic regression layer for prediction. The
short-term and real-time traffic flow predictions [48] help people to make decisions on dynamic
route planning.

(ii) Trajectory analysis and mining [78] are other common and fundamental ways to study traffic
dynamics, including approaches such as the derivation of trajectory data, trajectory data preprocess-
ing, trajectory data management, etc [105]. Trace data collected from multiple sources (e.g., mobile
devices, vehicles, and smart cards) are usually analyzed through clustering, classification, ranking,
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regression, and physical statistical modeling. Trajectories are often abstracted using data formats,
such as graphs, matrices, and tensors, to which more data mining and machine learning techniques
can be applied. Smart applications are built on the trajectory models to provide conveniences for
citizens. For example, iDiary [30] takes GPS trajectory data generated from users’ phones and
turns them into textual descriptions of the trajectories to enable text-searchable activities (e.g.,
transportation mode, “Where did I buy books?”). To do that, iDiary compresses the semantic and
clusters the trajectory of massive GPS signals in parallel to compute the critical locations of a user.
Then it applies text mining techniques on the resulting data with external knowledge to map the
locations to activities. F. Miao et al. [60] use taxi trajectory data to develop a data-driven robust taxi
dispatch framework considering spatial-temporally correlated demand uncertainties. It is evaluated
with 4-year taxi trip data for New York City and the results show that it reduces the average total
idle driving distance by 10.13% or about 20 million miles annually.
(iii) Strong correlations and influences exist among different transportation systems. With the

understanding of traffic dynamics from heterogeneous data, more effective models and systems
are built, such as smart parking [6], taxi dispatching [61], and bicycle sharing [76]. Researchers
integrate and analyze heterogeneous traffic information from multiple domains of transportation
to improve the performance of modeling and decision making. However, they also face many
practical issues caused by the highly-diverse datasets, such as heterogeneity of models, input data
sparsity, or unknown ground truth. Targeting the three practical issues, UrbanCPS [103] creates
three models, i.e. indirect models, sparse data models and weighting models to infer real-time traffic
speeds. Evaluating on the temporal, spatial and contextual contexts from 42 thousand vehicles (e.g.,
buses, taxicabs, and trucks), 10 million residents and 16 million smartcards of Shenzhen, China,
UrbanCPS increases the inference accuracy by 21% on average.

(iv) Simulation of urban mobility is another important and effective way to integrate, experiment
with, and visualize traffic dynamics. It assists the analysis of traffic dynamics in many aspects. For
example, SUMO [13], a powerful open source traffic simulation is broadly used to investigate several
research topics, such as, route choice, traffic optimization, and vehicular communication. With
SUMO, researchers are able to (i) model inter modal traffic systems consisting of road vehicles, public
transports, and pedestrians, (ii) utilize the supporting tools including route finding, visualization,
network import and emission calculation, and (iii) remotely control the simulation with various
APIs and custom models. M. Ma et al. [51] uses SUMO as a platform to build a smart city simulator
by implementing smart services, e.g. smart traffic services, emergency services, and environmental
services, on top of SUMO. They use this simulator to predict city performance with actions from
smart services and thus detect potential conflicts among them.
(v) EVs and hybrid electric vehicles are increasingly prevalent in the last two decades due to

the reusable energy and low emissions to the environment [29]. The availability of EVs promotes
research in modeling and decision making in smart cities, such as developing charging and dis-
charging schedules and identifying the distribution of charging stations. With difficult challenges
for handling large numbers of vehicles and their random arrivals, Y. He et al. [38] build scheduling
schemes for EVs charging and discharging using global and local optimizations to minimize the
total cost of all EVs during the day and maximize the current local active set of EVs, respectively.
With increasing number of EVs, uncoordinated charging of EVs can cause power grid problems
since it is extremely difficult to exactly predict how much power is required by household loads. K.
Clement-Nyns et al. [15] use quadratic and dynamic programming to maximize the power grid
load factor and minimize the power losses.

With the study on traffic dynamics and the development of techniques on autonomous vehicles,
the internet of autonomous vehicles [34] has begun to emerge into present transportation systems.
Paden et al. [77] conduct a comprehensive survey on the motion planing and control techniques for
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self-driving vehicles. As autonomous vehicles are programmed to make their own decisions, it is a
highly distributed system comparing to traditional transportation systems. On the other hand, it
also depends on the integration of information from other traffic data. The internet of autonomous
vehicles [46] is designed to be intelligent with the capabilities of communications, storage, and
learning, so as to anticipate the customers’ intentions with the help of the vehicular cloud. The
vehicular cloud contains the models of vehicular computing, information centric networking and
cloud resources.

3.2.2 Emergency and Public Safety. Emergency and public safety is one of the most important
domains of smart city research. Cities have been pursuing ways to deal with emergencies and
unsafe situations caused by natural disasters (e.g., earthquakes, hurricanes), malfunction of city
facilities (e.g., power loss, bridge collapse) and human factors (e.g. car collisions, building fires) for a
long time. With the prevalence of IoT, emergency and public safety systems are becoming smarter.
There are several smart modeling and decision making systems developed in the domain of

emergency and public safety. In cooperation with other domains, they usually consider information
of the events and behaviors of human beings, come up with strategies for potential emergency
situations, build emergency and public safety services, provide first aid remotely, and make im-
mediate decisions. For example, the IBM Intelligent operation center [5] is a system to manage
emergency events including both natural and human-made disasters. This system integrates data
from heterogeneous sources including the city event calendar, 911 CAD dispatch, weather services,
social media, GPS and sensors, video surveillance, public works data, and traffic data. It utilizes the
collected data to serve stakeholders in three stages, namely, an executive dashboard, a command
center, and a first responder and field operating stage. The executive dashboard analyzes the data to
alert people, detect patterns in data, and report to the command center. The command center further
analyzes the data with advanced data mining techniques for decision support. It weighs possible
impacts of alternative actions/decisions and considers the parameters of solution/performance
indicators (e.g., cost effectiveness, mortality, time constraints). Finally, the decision made at the
command center are forwarded to first responders and field operators for execution.

Information fusion from historical and real-time data is extremely important for decision making
when it comes to emergency and public safety. Smart911 [94] signs up personal information
of citizens, such as medical information, household address and related people. If a registered
person calls 911, emergency responders are able to make decisions leveraging this information to
save valuable time. Salamanderlive [89] provides a collaborative communication solution to the
resolution of incidents. Users capture images (such as the wound of a patient) in real-time from the
emergency scene to obtain first aid assistance remotely.

3.2.3 Energy. City energy systems are usually dependent on national energy systems. National
energy systems/services vary widely based on geographic location, availability of potential tradi-
tional and renewable energy sources, existing infrastructure and resources, economic condition
of a country, etc. Although existing works focus on different aspects of energy systems, in this
survey we only focus on the aspects that are most relevant to smart cities, such as, forecasting
energy demands, customized to different location/countries, analyzing and predicting energy usage
patterns at the individual and population levels, energy modeling for buildings [32], cities [62], and
industry [59, 99], and production and consumption of traditional and renewable energy sources.
Energy issues related to transportation systems are covered in the previous section.
Energy demand forecasting models are at the heart of energy services as they drive energy

demand management and effective utilization of the energy resources. Energy demand forecasting
models can be classified in various ways such as static versus dynamic, and uni-variate versus
multivariate. The set of underlying techniques deployed for energy demand forecasting includes,
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but is not limited to, times series models, regression models, econometric models, ARIMA models,
decomposition models, artificial neural network based models, genetic algorithm based models,
and integrated models (e.g., support vector regression) [97].

Energy models for buildings are gaining increasing attention as buildings act as the unit system
and contribute to the overall efficiency of the energy system of a city. An energy model refers
to the simulation of energy costs, utility bills, and life cycle costs of different energy consuming
systems (e.g., air conditioning unit, lights) in an infrastructure (e.g., building, apartment complex).
A comprehensive review on building energy models is found in [32]. Several commercial and
open source tools are available for modeling building energy, for instance, CYPETHERM, DIAL+,
Elements, IDA, DesignBuilder, and eQuest [25].

Another aspect of energy systems that is transforming smart cities is improving the efficiency of
energy grids. This is essential as (i) the increase in global population results in an overwhelming
increase in the demand for electricity, and (ii) governments across the globe are emphasizing the
reduction of their carbon footprints by increasing their utilization of renewable energy sources
in the power delivery chain. These complex challenges are driving the evolution of smart grid
technologies. The goal of using smart grids is to make the energy distribution and transmissionmore
efficient, reliable, secure, meet increasing demand for energy, and reduce pollution. Specifically,
smart grid technology reduces usage of fossil fuels to meet peak demand as they accommodate
renewable energy sources in addition to fossil fuels. Several existing works review different aspects
of smart grids. In order to maintain the reliability and stability of smart grid systems in the context
of environmental concerns, demand side management (DSM) is used. DSM is a proactive approach
where the energy consumption during peak hours is predicted, implemented and monitored by
controlling user side consumption. Based on the scale of energy management systems, DSM
applications can be categorized into 3 classes, namely, residential, commercial, and industrial
energy management systems [41]. Mahmood et al. focus on the technical characteristics of the
communication layer of smart grids [56]. They review several communication technologies (e.g.,
ZigBee, Wi-Fi, Bluetooth, Z-wave, 6LoWPAN, and cellular networks) for implementing smart
grids in terms of internet protocol support, power usage, data rate, range, and adoption rate.
They also identify the primary challenges of implementing the communication infrastructure of
smart grids, such as, communication and control complexity of smart grid systems, optimizing the
efficiency of different components of the integrated system, consistency, communication security,
standardization, scalability, and inter-operability.

3.2.4 Environment. To build a smart environment for humans in smart cities, the present environ-
mental models and systems are trying to maintain better monitoring, understanding, prediction,
and management of city environments, primarily considering the quality of air, noise and water.
Traditionally, environmental monitoring employs sensors and stations at fixed and limited

number of locations and are tested periodically in laboratories, which are both time and money
consuming with a very low granularity of data. With the development of IoT and ubiquitous sensing,
researchers are seeking to build cost-effective systems to obtain fine-grained environmental data
in real-time. Using wireless sensor networks, J. Gubbi et al. [37] develop a novel scalable multi-
tier noise monitoring architecture to continuously collect sound and other environmental data
(e.g. temperature, humidity, and lightness), and build prototype circuitry for determining noise
levels. With this platform, audio data are collected from both fixed stations and mobile devices and
visualized in a phone application in real-time. The Array of Things [71] is an IoT sensing project in
Chicago, which deploys modular sensor boxes to collect real-time city environmental data (e.g.,
climate, air quality and noise). Furthermore, Srinivas et al. [24] build a vehicular-based mobile
approach to measure real-time air quality, which are deployed on both public transportation and
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personal sensing devices. With the mobile sensing boxes and personal sensing devices, air quality
is measured and uploaded to the cloud server continuously.

With big data collected from environmental monitors, approaches are developed to obtain a better
understanding and thereby a more accurate prediction of city environmental variables. Despite
real-time monitoring, the environmental data collected are still “past” data with limited capability
to generate precaution actions. Analyzing the valuable monitoring data helps to understand the
patterns and correlations between environmental variables, leading to more accurate predictions.
For example, by integrating air-quality data (historical and real-time) with other related city state
data (e.g. meteorology, traffic flow, human mobility, road networks and POIs), U-Air [106] infers
the real-time and fine-grained air quality (PM 2.5) data using semi-supervised learning approaches
with two classifiers, i.e. a spatial classifier and a temporal classifier. The spatial classifier uses an
ANN and takes space related features such as the density of POIs and length of highways as input,
while the temporal classifier uses a linear-chain conditional random field and takes time related
features in a location such as traffic, meteorology. An extended work [107] focuses on forecasting
the air quality with a linear regression-based temporal predictor, a neural network-based spatial
predictor, a dynamic aggregator and an inflection predictor. These predictors are applied to model
the local factors of air quality, various global factors, combining the predictions of the spatial and
temporal predictors, and capturing sudden changes in air quality, respectively. The system has been
deployed to provide 48-hour fine-grained hourly air quality forecasts for four major Chinese cities.
One independent prediction model is trained for every 6 hours. The system has been deployed in
Chinese Ministry of Environmental Protection and obtains a precision greater than 0.75 in the first
six hours.
Building on environmental understanding and prediction capabilities, environmental manage-

ment and associated applications aim to (i) provide environment-related health advice for citizens,
(ii) assist other services for decision making, and most importantly, (iii) give real-time control
over the city environments. However, only a limited number of works has appeared in this area.
Some applications on smartphones offer user advice based on the environmental information, such
as weather and air quality. For example, AsthmaGuide [83] provides guidance and alarms based
on the real-time environment and patient’s data to help asthma patients avoid exposure to high
pollen counts. To assist decision making, environment modeling also helps with traffic emission
estimation and anomalous events detection.

3.2.5 Social Sensing. With the contributions of the IoT and human participation in smart cities,
sensing as a service and human sensing (or social sensing) have become another trend for developing
services.
Decision making in smart cities is starting to take the data gathered from social media into

account. With the advent of digitization, crowd-sourcing, and civic technology, various aspects of
city life are influenced by social sensing. Social media acts as a passive actuator that can influence
individuals, groups, or even an entire community. For example, several cities across the world
have active social media presences, and they influence the decisions citizens make every day. As of
2013, in the US, 772 Twitter handles are run by state and local law enforcement departments [80].
These Twitter accounts have millions of followers. The law enforcement departments often spread
notifications about important events such as, crime/incident (e.g., robbery, shooting, fire, accident),
natural calamities (e.g., flash flood, earthquake, storm, snow), planned events (e.g., concert, sports
match), traffic congestion, road construction, and so on. In addition, they often post safety tips to
avoid unwanted events. This information support citizens’ decision making from preparation of
natural disasters, mode of transportation, traffic route selection, to daily scheduling.
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Though crowd-sourcing has been researched for years, using crowd-sourcing models in smart
cities is still an emerging area. IBM [87] develops a crowd sensing system for the smart cities
domain and gives a case study on how it helps public safety to identify events. To start with, crowd
report data is delivered to the system from various sources such as social streams (e.g., Twitter),
mobile phones (e.g., SMS), transcripts (e.g., recordings of civilian calls to the city’s control center),
etc. After pre-processing, the data passes to filters such as language filters, topic-filters, and context
filters, then are clustered based on their semantic and contextual similarity. With weighting the
event’s textual features and cluster labeling techniques, a human readable summary of that event
is extracted. Furthermore, the analytic component analyzes the data to extract key performance
indicators and trends. At last, other physical sensor readings are integrated to improve the accuracy
of the system. R. Liu et al. [49] build a crowdsourcing system, ParkScan, which leverages the learned
parking decision model in collaboration with the hidden Markov model to estimate background
parking spot availability. ParkScan reduces by over 12.9% of availability estimation errors for all
the spots during peak parking hours.

3.3 Characteristics, Challenges and Future Work
The challenges of building models for smart cities is not only caused by the immense scale in the
temporal and spatial domains and the complex dependencies among services and sensors, but also
arises from other important factors. For example, a smart city is a system of systems integrating
services that are often independently developed. Without knowing the context of other services,
safety and service conflicts happen, especially at runtime. By integrating heterogeneous systems
that have very different objectives, protocols, computing and storage approaches into one system,
cities are vulnerable to security attacks at different layers, such as, the sensing layer, the computing
layer and the cloud layer. In addition, this system of systems faces strong uncertainties from both
the external environment and between the systems supporting different domains.

Furthermore, humans play important roles in the city system of systems, including the source of
data (sensors), sometimes acting as actuators involved in the services, and also as decision makers.
On one hand, human beings are the beneficiary of the system. On the other hand, they also need to
be protected from the system, such as maintaining their privacy, and their safety and health from
safety and service conflicts.

Overall, from both perspectives of the system of systems and humans in the loop, new challenges
and open questions arise to build and deploy city models.

3.3.1 Safety and Service Conflicts. With the emergence of smart cities, governments, companies,
and researchers are deploying tens of thousands of sensors in cities and developing smart services
on top of them to improve city performance. However, many smart services are developed inde-
pendently by different stakeholders under their own safety requirements, thus they are unaware
of actions, effects, or safety rules of other services. Serious safety issues are raised when many
independently developed services are integrated into the same smart city platform [53] because of
conflicts that may arise between the services.
Conflicts exist among services within or across domains. For example, the smart traffic service

reduces traffic congestion and optimizes city traffic by adjusting traffic signal according to traffic
conditions. At the same time, a smart event service may send a signal to the traffic lights to block
a street. These two services have a conflict on a specific device, the traffic signal [52]. M. Ma et
al. [51] presents a through taxonomy of conflicts, categorized by device conflicts, environmental
conflicts and human conflicts.
The effects of conflicts may deteriorate performance and violate safety requirements in direct

or indirect ways. For example, when managing an emergency event, an operation center [5] may
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cause traffic congestion nearby, violating a performance goal. In another example, a taxi dispatch
system [61] may increase the air pollution in a public place (e.g., school, shopping mall) while
dispatching more taxis there to provide better service. This may harm the health of air pollution
sensitive people, e.g., people with asthma, thereby causing an indirect safety violation.
There are some existing works on detecting conflicts across multiple services or applications.

CityGuard [51] focuses on detecting conflicts in the interventions from multiple smart city services
by representing actions and effects of actions of different services using a structured format. Some
runtime verification of smart cities [54] uses Signal Temporal Logic (STL) to monitor and predict
traces of city states and verifies the safety and performance requirements. An interesting research
direction is to detect conflicts in a dynamic complex smart city environment by interpreting and
combining heterogeneous, unstructured textual, numerical, audio, and video data generated from
different city services. CityResolver [55] provides a decision making support system by showing
the trade-offs between different options with their violation degree to users when they are facing a
conflict between actions in smart cities. However, due to the complex and dynamic actions and
environment of a smart city, some conflicts are inevitable that may compromise the safety and
performance of a city. Hence, run time safety monitoring to detect and resolve conflicts is also
extremely important for smart cities.

There are also great challenges to address the safety and service conflicts at the early stage of the
development of smart cities. To start with, there is a very limited number of safety requirements
for smart cities. Even city managers do not know the proper logistics and parameters for safety.
Secondly, it is very difficult to predict city future performance with requested actions from smart
services considering the complexity in spatial and temporal dimensions, and the uncertainties in the
city. Thirdly, due to the diversity of services from different stakeholders and a large number of safety
requirements from different domains, it is very difficult or even impossible to build everything into
one optimization function. Fourthly, all existing work applies a centralized solution, which may be
problematic in a real deployment without considering different levels of detail and geographical
regions. A hybrid centralized and decentralized solution should be considered in the future work.
Nevertheless, we believe that developing safe and conflict-free smart city systems should be a major
direction for smart cities in the future.

3.3.2 Security. Security is crucial and challenging characteristic since services not only collect
data from the city, but also take actions on the city facilities and influence citizens’ lives [104].
There are tens of thousands of things connected in smart cities, each one of which is possible to
be compromised and perhaps jeopardize the whole system. Potential threats come from different
layers of the system and can lead to serious consequences.
Sensing and Actuation Layer: The potential security issues from the sensing and actuation

layers come from the nodes for data acquisition from the environment, devices for acting, and
communication between them. IoT devices are developed by different stakeholders for various
purpose, some of them have very little or no concerns for security at all. For example, attackers
compromise the high wattage IoT devices to cause local power outages and even, large-scale
blackouts [95]. Social media platforms usually apply sentiment analysis algorithms to the online
news and posters in order to analyze social opinions (e.g., positive, negative, happy, sad) on the
news or block malicious posts. However, adversary samples are injected to the posters to influence
the analyzing results [33]. Social media monitor services are not able to obtain the correct social
emotions and may leave out a big event.

In addition, once sensors are deployed in the city, it is not easy to update or change the devices.
However, new attacks emerge rapidly. How to maintain the security of “old” devices and develop
adaptive defense strategies are still open questions.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article . Publication date: October 2019.



20 M. Ma et al.

Edge and Fog Computing Layer: Due to the overhead and delays involved with cloud computing,
edge and fog computing are becoming more popular in smart city systems in recent years. Different
from the cloud, edge and fog layers are composed of mobile devices mostly with limited capabilities
and more vulnerable to malicious attacks. Roman gives a comprehensive survey[88] on the security
threats, challenges, and mechanisms of edge and fog computing. The attacks usually happen in the
network infrastructure, edge data center, core service infrastructures, virtualization infrastructure,
and user devices.
Building upon the traditional security technology, new approaches are being developed. For

example, Blockchain is a decentralized and distributed platform accessible by a peer-to-peer network.
IoT oriented smart city subsystems can automatically access required data from IoT devices by
smart contracts in the blockchain network (e.g., Block-VN [93]), thus improving the reliability,
privacy and transparency of smart city systems. However, it is an open research question as to
whether blockchian can be used at the edge and fog layers in practice due to its execution time
costs.
Cloud Layer: With the prevalence and convenience of cloud computing, most of the important

city data are stored and processed in the cloud. Attackers can compromise the cloud and obtain
important privacy-sensitive data, sabotage the decisionmaking algorithms, inject adversary samples
to the data to influence the decision, send actions to the actuators to cause chaos in the city, etc.
Many works have been done regarding the security of cloud computing [108]. Instead of intro-

ducing the techniques, we emphasize the challenges on cloud security raised by the characteristics
of smart cities. First, data are uploaded from and used by a large number of devices. Attackers can
easily get the access to the cloud by disguising themselves as a device or obtain the password by
hacking a vulnerable device. In addition, traditional techniques to detect an attack may not work
well due to all the characteristics of city data (see Section 2.3). Furthermore, privacy sensitive data
and the variety of roles used to access the data increase the authentication challenges of the cloud
security.
In summary, a smart city is a vulnerable IoT system due to its large geographical distribution,

the large number of devices and the complex communications among them. Therefore, how to
ensure the security of devices is crucial for future research. To be noted, these devices (1) are highly
heterogeneous regarding the operating system, RAM, functions, protocols, deployment time and
may not have the capability to install large security-based software, and (2) could be difficult to be
updated once deployed and, therefore, vulnerable to new attacks.

3.3.3 Uncertainty. Smart cities exhibit a high degree of uncertainty. Services operate in open
and highly dynamic environments. In this setting there are many sources of uncertainty. The
environment itself is non-deterministic; trains are late, buses break down, air pollution varies
by street, etc. Human behavior is uncertain and affects services. Collected data have extraneous,
missing, or incorrect values. Sensors may fail. Disruptive events occur; gas leaks, heavy rain,
accidents, etc. The actions of humans are often unpredictable. Consequently, uncertainty stands as
a core challenge for effective operation of smart cities [11, 39].

In addition to the uncertainty arising from what smart cities currently have as smart components,
there is also uncertainty about what they could have in the near future [11]. A smart city is not static,
rather it is a continuous process of change and improvements [42]. For example, "how smoothly
the next technology, e.g., smarter sensors, will integrate with the existing sensors" is a legitimate
question of uncertainty. Thus, as uncertainty increases, the modeling and decision making in smart
cities become more difficult because decisions are based on stochastic and incomplete knowledge.
In turn, confidence in the correctness and effectiveness in the models and decisions are imprecise.
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As a result, the quality of services in a smart city as a whole would be degraded with the improper
consideration of uncertainty.
From the above, it is clear that uncertainty is a vital challenge in smart cities. Most works

have addressed this challenge for a single service and often with restricted types of uncertainties.
For example, the work [82] addresses just one of type of uncertainty, the uncertainty of users’
location. The authors attempt to find an efficient way to model and index imprecise positioning,
(i.e., inaccurate GPS, or user’s cloaked location), of a moving user while achieving high quality
processing for his service requests. To the best of our knowledge, there is still no research work
that handles uncertainty on the global level and across services of a smart city. Thus, it remains an
open research problem.

3.3.4 Humans in the Loop. Smart city services exhibit many variations of human-in-the-loop
feedback control systems where the degree of human involvement varies according to system
design, functionality, and implementation. In the context of smart cities humans interact at different
levels in different roles. Humans (usually government officials) make decisions about policies
that are implemented for citizens. From the IoT system perspective, humans often act as sensors
(e.g., social sensing, citizen governance) [86], actuators (e.g., constructing road, rescue people
in emergency situations), and controllers (e.g., making decisions). Munir et al. identify a set of
generic cyber physical system challenges for human-in-the-loop control applications, such as,
handling real time responses, deriving models of human behavior, determining ways to formally
incorporate human behavior models into feedback control, etc. [63]. There are several additional
human-in-the-loop challenges in the context of smart cities as described below.
Humans as actuators: Although in existing city services automated actuation is limited (e.g.,

controlling traffic, parking), in the future it is projected to increase and replace humans in many
cases (e.g., package delivering drones, self driving cars). One potential challenge here is to making
the interactions between humans and autonomous technology safe and conflict-free. There are
additional challenges when humans act as actuators, e.g., predicting certain human behaviors
or actions at the individual and community levels. For example, it is necessary to predict travel
patterns of passengers across different days of the week to adapt to dynamic demand and increase
efficiency of transport systems.
Humans as sensors: While social sensing offers robust, ubiquitous, and intelligent sensing [2],

this may also introduce intentional (e.g., spreading a rumor or fake news in social media) and
unintentional errors. Humans are oftenmonitored to collect data, design services, or operate services.
While there are a lot of existing solutions to monitor individual behavior, it is still challenging to
detect collective human behavior (e.g., activity detection in a multi-person home or in a crowded
train station). Another open question regarding sensing humans is how to infer knowledge from
the sensed data. Current technology focuses more on collecting a wide variety of data from humans
(e.g., social media activity, activities of daily living, physiological data, etc.), but often lack accurate
inference techniques. Inference is essential to understand human behavior and use the knowledge
in feedback loops.
Humans as decision makers: Decision making in the context of a smart city introduces several

challenges. First, collaborative decision making process can result in conflicting opinions about a
decision. As different experts with different backgrounds / motivation decide differently, conflict
resolution in such cases is challenging [40].

Second, deciding the metrics of outcome of a decision is another challenge. There may be multiple
metrics involved (e.g, saving resources, causing less harm to environment) and there might be
conflicting cases where optimizing one metric can negatively impact another metric [64]. This may
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also involve moral and ethical dilemmas regarding different policies [36], e.g., decision making
logic for autonomous vehicles to minimize casualty and resources.

Finally, one of the most difficult challenges of smart cities is predicting the effects of a decision
or action. For example, while planning for a rescue in an emergency event in a city, there might
be multiple options to pursue. To decide optimally, one needs to analyze the effects of each of the
potential options and select the one that may optimize the performance metric(s). Effects can be
primary, secondary or tertiary [51, 81]. Determining effects require accurate and timely modeling
of the system which might be difficult. When determining the effects of a decision it is also essential
to detect the severity of an effect as it can aid conflict resolution. In addition, decision making
often requires predicting the time horizon of effects as well. In addition, for decision making in
smart cities it is often essential to consider not only the effects on individuals, but also the effects
on a group of people or community. While existing human-centric applications heavily focus on
personalization [66], future smart city applications will require consideration of both individual
and collective outcomes. Thus humans, as decision makers, need to weigh the effects of a decision
from different aspects (e.g., individual effect vs collective effect, degree of severity of an effect, the
time horizon of the effect) while minimizing human errors and biases.

3.3.5 Privacy. One of the biggest challenges in smart cities is protecting individuals’ privacy [27, 28].
This challenge becomes more difficult as people become more connected to technology elements,
e.g., sensors, and use more smart services such as location-aware services. To receive any type of
service in a smart city, the user has to release part of his private information. As an example, for a
smart transportation service, to determine the nearest bus station, a rider’s current location must
be sent to the service provider. In smart health, to obtain advice from an on-line expert physician, a
patient needs to share his medical records and perhaps current physiological information collected
from wearable devices over the Internet.
To protect privacy yet permit use of services, researchers introduce a number of approaches

to trade off the level of privacy with the value of services, such as, cryptography, perturbation,
anonymization, and cloaking. Cryptography [26, 35] which turns data elements into unreadable
format to anyone except those who have the decryption key. Perturbation that substitutes the
actual data with synthetically generated data. This approach can be seen as adding noisy readings
to the original data [44, 84]. Anonymization [79] aims at hiding the user’s identity when sharing
his information to request a service. This can be performed by partial removal of the identifier data
element that causes a user to be unrecognizable among a number of other users. For example, hide
the social security number except the last four digits. Cloaking [58] is mainly used in location-aware
services, e.g., finding the nearest gas station. Cloaking defines user’s location in a larger area, e.g.,
zip code, rather than the exact position, e.g., latitude and longitude.
While there is on-going research on privacy preservation in general, there is still a lack of

handling privacy holistically over all services within the context of smart cities. Privacy policy
languages are needed that are understandable and easily set by users and implementation support
is also needed that dynamically enforces the polices. It is inevitable that conflicts will arise across
policies so techniques to detect and resolve policy conflicts are also required.

4 CONCLUSION
The main goal of the paper is to give the reader a fairly comprehensive view of the state-of-the-art
in smart city data, modeling, and decision making. This paper presents a survey of the data sets
being collected across multiple domains by 14 smart cities. It also discusses the characteristics,
associated challenges, and open research directions of the city data. The paper also discusses
modeling and decision making for smart city services with an emphasis on their modeling entities,
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methodologies, capabilities, and limitations. It highlights five overarching challenges (e.g., safety
and service conflict, security, privacy, human in the loop, and uncertainty) and the future research
questions raised by them.
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